ARO ${ }^{\circledR}$ Motion Control

Electronic / Pneumatic Logic Control Elements

Check Out These Other IR Industrial Productivity Solutions

Ingersoll-hand

- Ingersoll-Rand Air Solutions:

Air Compressors

- Ingersoll-Rand Professional Tools: Hand Tools / Hoists
Zimmerman Material Handling

- Fluid Handling

ARO
McCartney Polyethylene (Waterjet)

- Club Car

Carry All Carts

www.ingersoll-rand.com

Numeric Index

Number	Page								
20191	39	59155	36	59671-X	37	59861	18	59922	22
24130	41	59156	35	59690-X	45	59866	39	59923	22
58027	42	59157	36	59718	37	59874	36	59924	22
58060	42	59158	35	59724-X	41	59875	36	59925	22
59003-842	17	59159	36	59756-XXX	45	59879	35	11860X-X	6
59010	34	59160	35	59757-XXX	45	59880	35	119435-X	9
59023	34	59161-X	38	59759-XX	45	59881	36	119436-X	7,9
59061	40	59162-X	38	59760-XX	45	59882	36	119437-X	7,9
59062	40	59165-4	36	59761-Xx	45	59890	39	119438-X 5,7,9	,10,15
59063	40	59166-4	35	59762-XX	45	59891	39	119557	5,7,9
59073	41	59175-X	38	59763-X	45	59892	35	11958X-X	12
59084	41	59176-X	38	59764-4	45	59895	21	119775	10
59089	39	59181	34	59765-XX	45	59896	21	119779-X 5,7,9	,10,15
59095-X	43	59185	34	59792	42	59897	21	119811-X	12
59097-6	42	59191	17	59796-X	41	59898	21	119812-X	12
59107	41	59192	17	59800	34	59899	21	119816-X	6
59109	39	59200-XX	40	59801	43	5990X	45	119817-X	10
59100-XXX	44	59201-XX	40	59802	43	59900	21	119818-X	10
59111	34	59361	42	59803	41	59903	45	119819-X	10
59112	34	59387	40	59804	41	59908	45	119820-X	10
59113	34	59422	41	59807	45	59912	34	119897-XX	12
59114	36	59474-XXX	45	59808	17	59913	18	AXXXXX-XXX-X	6
59115	37	59482	45	59809	17	59914	18	GMP1XX	8
59116	37	59595-XX	40	59811-X	41	59915-XX	39	GP1XXX-XXX-X	8
59117	37	59629	45	59812-X	41	59916-X	44	MKN	6
59120	36	5963X-100	45	59837	40	59917	18	MKP	6
59121	35	59632-1	45	59836	43	59919-1	22	SMH51X-XX-X	4
59124	34	59634	45	59842	45	59920	22	S5XXXX	4
59125	34	59636	45	59860	18	59921	22	TNXXX-XXXXX-XXX	15

Table of Contents

SeriesEasy Wire SystemsSierra
Page
4-5
Alpha 6-7
Genesis 8-9
Interceptor 10-12
Technical Data 13
Transducer Cylinder 14-15
ARO Pneumatic Logic Controls
Specifications 16
Two-Hand Anti-Tie-Down 17
Flex-6 Accessory Units 18
Flex-6 Controls 19-33
Logic Elements 34-40
Indicators 41
Enclosures 42
Counters 43
Rotary Selectors 44
Liquid Level Sensors 44
Fittings 45

Features

ELC Systems Communications allows you to interface the best fluid power products with your PLC, or PC. If you've been searching for a simple, direct and inexpensive path to electronic orchestration of your machine assembly process, then consider ELC.

- Do away with Hardwiring Headaches! Circuit boards replace traditional wiring. Simple manifold-to-manifold connections.
- Split Stack Capabilities. Separate valves into two or more banks, but still control them over one cable from the PLC, without starting a second node (16-solenoids maximum).
- No BIG Control Box at the end of each valve stack. A MAJOR cost \& space savings.
- Three Levels of Communication: Parallel, Serial Interface and DeviceNet ${ }^{\text {TMM }}$.
- Surge suppression for every solenoid-standard.

AroNet ${ }^{\text {TM }}$ DeviceNet

- Fully DeviceNet Compatible.
- Split Stack Wiring Capability on Alpha \& Genesis.
- Controls up to 16 Solenoids/Inputs per node.
- Start a second node in the middle of a valve stack. (Genesis only)
- Add/Remove Valves in Minutes.
- External Power Available.
- Available for Genesis, Alpha and Sierra Valves.
- Available with Interceptor Input Block

AroLink ${ }^{\text {TM }}$ Serial Interface

- Controls up to 16 Solenoids/Inputs per Wire.
- Works with ANY make Discrete Output PLC.
- Quick, Single-to-Double Solenoid Conversion.
- Split Stack Wiring Capability.
- Compatible with Omron® Link Terminals, or direct connection to Omron PLC's (B7A language).
- Available for Genesis, Alpha and Sierra Valves.

- Available with Interceptor Input Block.

AroCom ${ }^{\text {TM }}$ Parallel

- Controls up to 15 Solenoids.
- Add/Remove Valves in Minutes.
- Split Stack Wiring Capability.
- Very Low Power Draw with Aro Low-Watt Solenoid.
- Easy Single-to-Double Solenoid Conversion.
- Available for Genesis and Alpha Valves.
- Operates off TTL (3.4V) to 24V Signal.

Features

AroLink and AroNet (DeviceNet) Systems carry signals to valve stacks over this small cable; eliminating the need for clumsy bundles of direct connection wires - dramatically reducing both space consumption and your valuable installation time. AroCom system is controlled over a cable.

ELC Systems for Genesis Valves

- Available in AroNet, AroLink and AroCom configurations. For use with Plug-In Valves.
- ELC intelligence is located within the manifold raceway.
- The first manifold requires an AroNet or AroLink smart card. Other manifolds use AroCom driver cards, including split stack manifolds.

ELC Systems for Alpha Valves

- Available in AroNet, AroLink and AroCom configurations. For use with Stacking or Thin Valves.
- ELC Intelligence is located within the valve raceway.
- The first valve requires an AroNet or AroLink smart card. Other valves use AroCom driver cards, including split stack valves.

ELC Systems for Sierra Valves

- Available in AroNet and AroLink configurations. For use with any Sierra body style.
- ELC intelligence is located within the manifold assembly.

Interceptor ${ }^{\text {TM }}$ Input Block

Interceptor ${ }^{\text {TM }}$ Input Block

- Allows Multiple 24V DC Sensors to Communicate on One Cable.
- Features 12 mm 4-Pin Connectors or Watertight Compression Fittings.
- Modular Design consists of one Command Module (AroLink or AroNet) and as many Sensor Modules as required; in packs of 4 Inputs, up to 16 Inputs total.
- Additional Modules can be quickly added/removed from the system.

Interceptor ${ }^{\text {TM }}$ Input Block

Alpha, Genesis and Sierra Valve ELC Systems

Ordering

Base-Mounted Valves

Sierra ELC Manifold (Valves sold separately)

ELC Manifold

Sierra Wiring Kits

119822-1 Plug-In Wire and Watertight Grommet Kit for Single Solenoid $-2 \quad$ Plug-In Wire and Watertight Grommet Kit for Double Solenoid
119751-1 Watertight Grommet Only for Single Solenoid
-2 Watertight Grommet Only for for Double Solenoid

Accessories

Transmitter Terminal (For AroLink System)
119557 Transmitter converts 24 PNP-Compatible, 16 inputs to AroLink signal

Cables (For AroLink Sierra)

119438-1 5-Wire Serial Communication Cable with Plug on One
119438-2 Same as -1 , except $30-\mathrm{ft}$. Length.

119438-1

Patch Cables (Serial Out-to-Serial-In, Device-to-Device)

119779-1 Male/Female 5-pin Patch Cable for AroLink - 6 ft .
-2 Male/Female 5-pin Patch Cable for AroLink - 12 ft .

119779-X

Alpha "Thin" Manifold

11860X - X			
Port Size		Number of Stations	
$\overline{\text { code }}$	Description	Code	Description
4	$118{ }^{\text {n }}$ NPT	${ }_{4}^{2}$	2 Station 4 Station
5	$1 / 44^{\text {NPT }}$	6	6 Station
Consult factory for BSP Models.		8	8 Station
		10	10 Station

Alpha ELC End Plates

For AroCom System

$$
\begin{aligned}
\text { 119816-1 } & \text { Parallel In (Left) Parallel Out (Right) } \\
-2 & \text { Parallel In (Left) Serial/External Power (Right) } \\
-3 & \text { Parallel In (Left) Blank (Right) }
\end{aligned}
$$

For AroLink and AroNet
119816-4 Serial In (Left) Parallel Out (Right)
-5 Serial In (Left) Serial/External Power (Right)
-6 Serial In (Left) Blank (Right)
Valve Stacking End Plate

Alpha ELC

MKN One MKN Kit is required to stack 1-to-6 Valves without Isolator Plates. Each contains 2 End Plates, 2 Cap Screws and 1 Gasket.
MKP One MKN Kit is required to stack 7-to-12 Valves without Isolator Plates, or 1 -to-12 Valves with an Isolator Plate. Each contains 2 End Plates, 2 Cap Screws and 1 Gasket.

Accessories

Valve Cables (For AroCom System and Alpha)
119436-1 28-Wire Cable, Plugs on Both Ends, 6-ft.
-2 28-Wire Cable, Plugs on Both Ends, 12-ft.
-3 28-Wire Cable, Plugs on Both Ends, 24-ft.
119437-1 28-Wire Cable, Plugs on One End, 6-ft.
-2 28 -Wire Cable, Plugs on One End, 12-ft.
-3 28-Wire Cable, Plugs on One End, 24-ft.

Transmitter Terminal (For AroLink System)

119557 Transmitter converts 24 PNP-Compatible, 16 inputs to AroLink signal

Cables (For AroLink Alpha)
119438-1 5-Wire Serial Communication Cable with Plug on One End and 5 (ea.) stripped wires on other. $12-\mathrm{ft}$. Length
119438-2 Same as -1, except 30-ft. Length.

Patch Cables (Serial Out-to-Serial-In, Device-to-Device)

119779-1 Male/Female 5-pin Patch Cable for AroLink - 6 ft.
-2 Male/Female 5-pin Patch Cable for AroLink - 12 ft .

8 I Genesis•ELC Systems

Ordering

Plug-In Valves

Plug-In Valve Manifold

Genesis Manifold,
Plug-In Subbase
ISO Size 1
Port Size
Code Description
2 1/4" NPT
3 3/8" NPT
Bottom ports are always $1 / 4^{4}$.

Wiring Options
Code Description
5 EasyWire AroNet (DeviceNet) System
6 EasyWire AroLink System
7 EasyWire AroCom System
See page 9 for End Plate ordering information.

SoftWire

Manifold

End Plates

119435-9 Parallel In (Left), Nothing Out with Air (Port) connections (Right).
119435-10 Parallel In (Left), Nothing Out (Right).

Accessories

End Plates (For AroCom System)

119435-1 Parallel In (Left), Parallel Out (Right)
-2 Parallel In (Left), External Power/Serial Out (Right)
-3 Parallel In (Left), Nothing Out with
Air (Port) connections (Right)
-4 Parallel In (Left), Nothing Out (Right)

End Plates (For AroLink and AroNet)

119435-5 Serial In (Left), Parallel Out (Right)
-6 Serial In (Left), External Power/Serial Out (Right)
$-7 \quad$ Serial In (Left), Nothing Out with Air (Port) Connections (Right)
-8 Serial In (Left), Nothing Out (Right)

Valve Cables (For AroCom Systems and Genesis)

119436-1	28-Wire Cable, Plugs on Both Ends, 6-ft.
-2	28-Wire Cable, Plugs on Both Ends, 12-ft.
-3	28-Wire Cable, Plugs on Both Ends, 24-ft.
119437-1	28-Wire Cable, Plugs on One End, 6-ft.
-2	28-Wire Cable, Plugs on One End, 12-ft.
-3	28-Wire Cable, Plugs on One End, 24-ft.
Transmi	Terminal (For AroLink System)
119557	Transmitter converts 24 PNP-Compatible inputs to AroLink signal

Cables (For AroLink Genesis and Interceptor)
119438-1 5-Wire Serial Communication Cable with Plug on One End and 5 (ea.) stripped wires on other. 12-ft. Length
119438-2 Same as -1 , except 30 -ft. Length.

Patch Cables (Serial Out-to-Serial-In, Device-to-Device)

Geness

119436-1

119438-1

119779-X

119779-1 Male/Female 5-pin Patch Cable for AroLink - 6 ft .
-2 Male/Female 5-pin Patch Cable for AroLink - 12 ft .

Features

- Allows Multiple Sensors to Communicate on One Cable.
- Available with 12 mm 4 -pin Connectors or Pass-Thru Water-Tight Compression Fittings.
- Field Convertible Models can be Sourcing or Sinking for Hall (3-Wire) or Reed (2 - Wire) Sensors.
- Totally Modular Design includes One Command Module (AroLink or AroNet) and as many Sensor Modules as Required - in Modules of 4 Inputs (Max. 4 Modules), up to 16 Inputs Total.
- Additional Sensor Modules can be Added/Removed Quickly.

Accessories

Interceptor Modules

119818-1 Command Module for AroNet (DeviceNet)
-2 Command Module for AroLink
119819-1 12 mm Plug-In Sensor Module-Sourcing
-2 $\quad 12 \mathrm{~mm}$ Plug-In Sensor Module-Sinking
-3 12 mm Plug-In Sensor Module-Reed
119820-1 Compression Fitting Sensor Module-Sourcing/Reed
-2 Compression Fitting Sensor Module-Sinking/Reed
119817-1 Endplate Kit for Interceptor
-2 Endplate Kit for Interceptor with Serial-In / Serial Out Connector

Interceptor ${ }^{\text {TM }}$

Interceptor

119818-X

119820-X

Ordering

Interceptor Block Ordering Instructions

Interceptor blocks can be ordered and factory assembled in hundreds of possible configurations. Simply follow this module menu from left to right. If preferred, you can order individual modules from the table above-using the listed 8-digit model numbers.

Note: Blocks containing compression fitting - style modules will be shipped unassembled.

119817-X

119775

119438-1

119779-X

Dimensional Data

Interceptor ${ }^{\text {TM }}$

No. of Input Modules	"A"	
1	4.740	(120.4)
2	6.724	(170.8)
3	8.707	(221.2)
4	10.691	(271.6)

Compression Fittings

Accessories

Cylinder Position Switches

11958X-X See "Switch Specifications" below.

Switch Cables (Sensor-to-Device)

11958X-X
119811-1 $\quad 8 \mathrm{~mm}$ Connector Cable for Plug-On Switches (bare leads) - 6 ft .
-2 $\quad 8 \mathrm{~mm}$ Connector Cable for Plug-On Switches (bare leads) - 12 ft .
119812-1 $\quad 8 \mathrm{~mm}$ Connector Cable for Plug-On Switches (12mm Interceptor Connection on opposite end) - 6 ft .
-2 $\quad 8 \mathrm{~mm}$ Connector Cable for Plug-On Switches (12mm Interceptor Connection on opposite end) - 12 ft .

119811-X

119812-X

Switch Specifications

Model Number	119581-1	119581-2	119581-3	119582-1	119582-2	119582-3	119583-1	119583-2	119583-3
Lead Length/Type	1 m bare	3 m bare	Plug	1 m bare	3 m bare	Plug	1 m bare	3 m bare	Plug
Lead Color	Black			Grey			Black		
Switch Type	REED			PNP(SOURCING)			NPN (SINKING)		
Input Voltage	100 VDC, 125 VAC Max.			10-30 VDC			5-30 VDC		
Operating Current	300 mA (150 mA Inductive)						5-100mA @ 5V		
				7-100mA @ 12V			10-200mA @ 12V		
				14-200mA @ 24V			20-200mA @ 24V		
Detecting Distance	2.5 mm			1.5 mm			$1.5 \mathrm{~mm}$		
Detecting Width				3.0 mm			3.0 mm		
Response Time	$1 \mathrm{mSec} . \mathrm{Min}$.								
LED Function	18mA Min.			$1 \mathrm{~mA} \mathrm{Min}$.			$1 \mathrm{~mA} \mathrm{Min}$.		

Provenair Switch Brackets

Bore	Model Number
$1-1 / 2^{\prime \prime}$	119584
2 ", 2-1/2"	119585
$3-1 / 4$ " \& 4"	119586

CYLINDER BORE (Inches)			
	$11 / 2^{\prime \prime}$	$2 \& 21 / 2^{\prime \prime}$	$31 / 4^{\prime \prime} \& 4^{\prime \prime}$
B1	.51	.60	.80
B2	1.50	1.77	2.45
B3	.26	.26	.33

Economair Switch Brackets

Bore	Model Number	Bore	Model Number
$1-1 / 8^{\prime \prime}$	$119897-18$	$2-1 / 2^{\prime \prime}$	$119897-25$
$1-1 / 2^{\prime \prime}$	$119897-15$	$3^{\prime \prime}$	$119897-30$
$2 "$	$119897-20$	$4 "$	$119897-40$

Hall Effect Switchs

It is important to note that Hall Effect switches must always have current through them to work. In a magnetic field, the semiconductor generates a voltage across the sense leads. Removing the magnetic field returns the switch to its normally open state. Hall effect switches have 'three wire' leads. Black leads are sinking (NPN). Grey leads are sourcing (PNP). Load is controller. There are two types of Hall Effect switches. Each is connected differently. Check your PLC for the input method used. Sinking (NPN) will sink current to ground. Sourcing (PNP) will provide current from the +VDC.

NOTE: Operating temperature is $14-1400 \mathrm{~F}$ and the environmental rating is IEC IP 67 in all three switch types. Std. Red LED requires min 18 mA .

NOTE: Order bracket and switch separately.

Reed Switchs

Switch is normally open, load can be attached to BROWN or BLUE lead. The BROWN lead is the higher potential side of the switch. In a magnetic field, the two reeds are brought into contact to "make" the circuit. Reed switches have black, 'two wire' leads.

N.O.

Mag. Field

Technical Data

ELC General

Low Watt Coil
Power (VDC)
Current per Coil (mA)
Max. Solenoids ON at any time
(per system of 16 coils)
Max. Temperature (deg. F)
Max. Pressure (psig)

24
75
16
$240^{\circ}\left(115^{\circ} \mathrm{C}\right)$
115 (7.9 bar)

Standard Coil
24 240
12
$240^{\circ}\left(115^{\circ} \mathrm{C}\right)$
150 (10.3bar)

ELC System

	AroCom	AroLink	AroNet (DeviceNet)
Power (VDC)	24	24	24
Signal Voltage/Current	3.4V @ 3.4mAto 24V @ 33mA	20V to 24V @ 6mA	
Max. Distance:Power at PLC	60 ft (18m)	$50 \mathrm{ft}(15 \mathrm{~m})$	Refer to
External Power	$100 \mathrm{ft}(30 \mathrm{~m})$	330 ft (100m)	DeviceNet
Dual Power	$130 \mathrm{ft}(40 \mathrm{~m})$	1640 ft (500m)	Specifications
Max. Scan Time (mS)		19 (high speed 3 mS available)	
PLC to be used	any discrete output DC (3.4V to 24 V)	sourcing discrete output PLC (24V)	

AroNet Configuration

DIP Switch Configurations:	SW1	SW2	Baud Rate
	OPEN	OPEN	125 k
	CLOSED	OPEN	250 k
	OPEN	CLOSED	500 k
Reset MAC ID to 63 @ Power On	CLOSED	CLOSED	Default Setting

LED Designations:	LED 1 (Module Status)	LED 2 (Network Status)
Solid Green	AroNet Receiving Power	AroNet Allocated
Flashing Green	AroNet Running through startup procedures	AroNet senses network, but is unable to communicate. Possible Node Allocation Collision.
Red (any form)	Not Applicable	Fault Mode. AroNet is unable to sense network. Possible failure to allocate a node on network.
Communication Type:	Pollied Device (Group 2 only slave)	
Bit Mapping Reservations:	16 Bit output word, additio upon DeviceNet scanner/P	nal enable bit dependent LC interfacing..

Features

Series TN

- Fully Repairable
- NFPA Interchangeable
- Infinite Resolution
- Factory Lubricated
- Factory Installed mounts or,
- Customer Installed mount kits

The Linear Resistive Transducer probe is completely inside the cylinder piston rod. There are no external parts (except the connector), therefore, the Provenair LRT is NFPA interchangeable. A floating contact, attached to the piston moves along the resistive and collector strips on the probe as the cylinder reciprocates. The linear resistance directly proportions the output voltage, indicating the position of the contact. Using a controller with an Analog card, cylinder position can be infinitely determined. Cylinder position can be controlled using a proportional valve. Accuracy is affected by 3 factors:
Resolution is the smallest detectable position change measurable. The Provenair LRT is infinite, thus the Resolution is limited by the electronics used (a 12-bit, 4096-part controller would divide the stroke into 4096 parts. Using 10 VDC input voltage, the smallest detectable increment on a 10 " stroke will be $10 \div 4096=2.4$ millivolt $=0.0024^{\prime \prime}$).
Linearity is the reference to the maximum deviation of the output voltage to a straight line. The Provenair linearity is $\pm 0.5 \%$ of stroke.
Repeatability is the LRT ability to output the same voltage at each unique position every time. The Provenair LRT repeatability is ± 0.0001 ".

Stroke:
Rod Diameter:
Resolution:
Nonlinearity
Signal:
Maximum Speed:
Probe Life:
Nominal Resistance:
Temperature:
Magnetic Interference:
Interface:

600mm Max.
$5 / 8^{\prime \prime}$ or $1^{\prime \prime}$
Infinite
1.0\% (or less) of full stroke

0-30VDC
50 " / sec. pneumatic $20^{\prime \prime} /$ sec. hydraulic
7,500 miles
1 Kohm / stroke inch $-25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
None
NEMA 4, Euro 12mm, 5 pin

Dimensional Data

NEMA 412mm Male Eurostyle Connector Pin 1
+ Input (Brown)

Ordering

Include dashes (-). Dashes are significant.
Series TN (1-1/2" thru 4" Bore) ACTUATORS
Transducer Cylinders Begin With T
SERIES (NFPA)
All Provenair Cylinders are Series N
TYPE
A Double Acting,
BORE SIZE

Q	$1-1 / 2^{\prime \prime}$	W	$3-1 / 4^{\prime \prime}$
S	$2 "$	4	$4^{\prime \prime}$
T	$2-1 / 2^{\prime \prime}$		

ROD DIAMETER
K $\quad 5 / 8^{\prime \prime} \quad$ Available: $11 / 2^{\prime \prime}, 2^{\prime \prime}, 21 / 2^{\prime \prime}$ bores.
M 1" Available: $31 / 4^{\prime \prime}, 4^{\prime \prime}$ bore.
ROD STYLE Stainess Steel Only

4	S.S., Standard Male (KK1) (Studded)	6	S.S., Full Male (CC) (Studded)
5	S.S., Intermediate Male (KK2) (Studded)	K	S.S., Female (KK1)

SEALS

S Slippery
CUSHIONS
X No Cushions
H Cushion Head End (Rod End)
PORT LOCATION (MS4 mouns: Port locations sher than "A", call facory,)

A	H1, C1, P2 (Std.)	$\mathbf{1}$	H1, C1, P4	Pin Connections
B	H1, C2, P3	$\mathbf{2}$	H1, C2, P1	Always 90° From
C	H1, C3, P4	3	H1, C3, P2	Port.
D	H1, C4, P1	4	H1, C4, P3	

MOUNT (MS4 mounts: Port locations other than A or 1 call factory.)

A MS1	D MP2	H MF2	Q MX1	U MX3	1	FMB	3	FMH
C MP1	F MF1	K MP4	T MX2	X No Mount	2	FMC		

Determine port location looking at rod end of cylinder.

NOTE:
Maximum stroke 24", for longer strokes contact factory.

NOTE:
Cap end port and connector (PIN) location must be determined looking at rod end of cylinder. Pin location will be 90° from cap port, available in either left or right quadrant. See below.

Typical Applications

Web Guide

Edge Guide

Positioning

Standard Port and PIN Location

MS4 Mount Standard
NOTE: To obtain the MS4 mount with any other port locations,contact factory.

Features

Aro Pneumatic Logic Control Overview

Elements: Elements are miniature diaphragm operated poppet valves designed to perform specific functions. This includes "Or," "And," "Not," plus various "Memory" and "Delay" functions. Elements are designed so response times, shift ratios, flow and exhaust capacities are closely matched and all are compatible in a total system. This compatibility simplifies circuit design.
Circuit Board Construction: Aro's patented circuit board construction uses a gasket and two metal plates to create a custom air manifold. Interconnections between the elements are cut into the gasket (module) and sealed between the metal plates. The result is a completely interconnected circuit without tubing or fittings. Two gasket modules are used for more complex circuits. Circuit Boards produce a smaller circuit package at lower cost; increased tamper resistance; and provide a clean, neat assembly.
Function Base Assembly Method: A Function Base can be used when circuits require four or less elements. This consists of a gasket module, a thin metal plate and a porting strip. Interconnections between the elements are cut into the module. The porting strip has $1 / 8^{\prime \prime}$ NPTF ports, eliminating the need for porting blocks. This method can be mounted on any flat surface; it provides a neat, durable assembly; and it increases tamper resistance.
Back Tubulation Construction: This method uses a thin metal plate (base plate) and porting blocks for each element. Each block has built in fittings for $5 / 32^{\prime \prime}(4 \mathrm{~mm})$ tubing. Element interconnections are made by connecting tubes to these fittings. Back tubulation is often used for "bread boarding" new circuits, air circuit training and if circuits are frequently changed.
 Individual Elements

Circuit Board Construction

Back Tubulation

Performance Specifications

Air Supply Preparation

Recommended Filtration: Filter air with a 40 micron filter or better. Additional screens in the base of timing function elements and amplifiers prevent large particles from entering the element.

Recommended Lubrication: None required for individual elements, or for circuits including timing functions or amplifiers.

Moisture: All metal parts are chromate plated to resist corrosion from moisture and many chemicals. A dry air supply is recommended for maximum repeatability of timing and sensing functions.

Operating Air:
Operating Pressure: $30-150 \mathrm{PSI}(2-10 \mathrm{bar})$. Two-hand anti-tie-down devices require $50-125 \mathrm{PSI}(3.5-9 \mathrm{bar})$.

Shift Pressures:

Snap-Acting Elements (And, Not, Inhibitor, S/R -- Mem, Delay and Pulse) shift when the pilot pressure exceeds 70% of the supply. They return when pilot pressure is less than 40% (Inhibitor 5\%) of the supply.
Non-Snap-Acting Elements (Or -- Flip-Flop) have a shift pressure of 50% of supply pressure.

Flow \& Cv Factors:

Dependent on specific elements and flow paths.
Flow = 9.3-16.2 SCFM, CV =.14-.28

Identification:

Symbols: Each element has a symbol based on the National Standard for diagramming moving part logic control (attached method).

Port Identification: Letters cast into the cover and base of each element correspond to input and output designations.

Mounting: Elements have $5 / 8$ " (15.9 mm) bolt extensions. All mounting hardware and seals are provided with each element.

Test Ports: Many elements have $1 / 8{ }^{\prime \prime}$ NPT ports connected to the "C" (output) port. These can be used as optional output ports, or as test ports.

Anticipated Life:

Element Life: APLC elements have proven extremely durable, operating many millions of cycles, or several years, without failure. If needed, repair kits or parts are available for most elements.

Features

- Ideal for machines where position of operator's hands must be monitored.
- Actuate and hold both air valve buttons concurrently to maintain an output air signal. If either push button is released, the output air signal is exhausted, indicating the operator's hands are no longer in position.
- Operating Pressures: 50-125 PSI (3.5-8.6 bar). Designed to comply with OSHA regulations.
- See page 32 for additional information on hooking up 59191 signal elements.
Warning: These provide only the anti-tie down logic function and are not stroke limiting devices. On machines with full revolution clutches and/or where repeat cycles can occur, approved safety and/or single stroke devices must be used in conjunction with the anti-tie down units.

Elements

59191 Base Mounted

- Element has three $1 / 8$ " NPTF ports on top. 2 inputs, 1 output.
- Element is base mounted.

59192 Circuit Board Mounted

- Occupies six (6) element spaces, 2×3 on circuit board. Not designed for back tubulation construction.
- Element has two $1 / 8$ " NPTF input ports on top, one O-Ring sealed output port to circuit board.
Ordering Information: Order push button valves separately.

Packages

59808

- Includes two enclosures with green push button valves separated by a length of flexible conduit. External supply and output to machine is made by $5 / 32^{\prime \prime}(4 \mathrm{~mm})$ instant tube fittings.
- Comes assembled with all internal connections ready to install on machine.
- Palm Buttons are 30" center to center.

59809

- Green push buttons located on opposite ends of a single enclosure. External supply and output to machine is made by $5 / 32$ " (4 mm) instant tube fittings.
- Comes assembled with all internal connections ready to install on machine.

59003-842

- Unassembled package.
- Includes 59191 anti-tie-down block, two 461-3 palm buttons with 20975 guards, 10 feet of $5 / 32$ " tubing and fittings for 59191.
- Customer can custom fit components to machine.

Accessories

59860 Signal Standardizer

- Converts an input signal of any duration into a timed output signal.
- Built in 4-way function in which two output signals are provided; one normally on, the other normally off.
- Can be used for 3-way and 4-way valves of all types including single and double pilot-operated models.
- Timing Range is 0.1 to 3 seconds. Longer with use of an accumulator. Each additional cu. in. of space added will give an extra 8 seconds of timing.
- Use filtered, dry, non-lubricated air. 40-125 psi (2-10.4 bar)
- See page 32 for additional information.

59861 Oscillator Circuit

- Use in applications involving cycling and oscillating valves and cylinders for manufacturing and testing; as well as, pumping, sorting \& painting.
- Has two dial timers so both phases can be adjusted independently.
- Can be used for all types of 3-way and 4-way valves.
- Recommended Timing Range of 1 to 3 seconds. Longer when using an accumulator. Each additional cu. in. of space added will give an extra 8 seconds of timing.
- See page 32 for additional information.

NOTE: For set-up or trouble-shooting, time delay functions can be adjusted far beyond their recommended range; however, if their normal operating time is longer than 3 seconds, additional volume should be connected to the port marked "Acu" (to the right of the adjustment dial). Each cubic inch additional volume connected to this port will increase the maximum range of the time delay by 8 seconds. A pressure gauge tee'd into the accumulator port can be very valuable as a visual aid when adjusting timers with extended ranges.

59917 Binary Flip-Flop

- With supply on, output one or output two will be on and the other off.
- Pressurizing the trigger port switches the outputs between on and off.

NOTE: All Flex-6 units have $10 / 32$ " ports.

In Line Logic Elements

59914 "OR" Element

- Connects two inputs to one output. The output will be on when either, or both, inputs are on.

59913 "AND" Element

- Connects two inputs to one output. The output will be on when both inputs are on.
Operating Pressure: $30-150$ PSIG (2-10 bar)
Operating Temperature: $32^{\circ}-160^{\circ} \mathrm{F}\left(0^{\circ}-71^{\circ} \mathrm{C}\right)$
Ports: \#10-32 threads Shuttle/Poppet: Buna N
Body Material: Acetal Resin
Inserts: Aluminum
Flow: "OR" = 4 SCFM
"AND" = 3.2 SCFM
Cv: "OR" = 11
"AND" = . 09

59860

59861

59917

Dimensions for Base Mounted Units Ports are 10/32 Threads

59913

59914

Features

Flex 6

Designed to Control Sequential Type Machines

- Simplifies design \& installation of control circuits.
- Circuit changes or additions can be accomplished in seconds.
- Very economical for simple air operated machines and fixtures.
- Ideal for harsh and explosive environments.
- All ports are 10/32 threads.

Set/Reset Memory: The first step in each Flex-6 circuit is controlled by a set/reset memory. A momentary start signal pressurizes the set port, causes the memory to go on and starts the sequence. The memory remains on until the reset port is pressurized (end of cycle or emergency stop). Loss of supply pressure also resets the memory (output off).

Automatic Reset Memory: Other Flex-6 memory functions automatically reset. A momentary signal at the set port causes the memory output to go on, provided the previous stage is on. The output will remain on until the entire circuit is reset. This memory has the ability to ignore signals arriving at the wrong time and will reset regardless of the set input condition. You don't need to analyze if the set signal is momentary or maintained, nor are you required to connect limit valves in series with a previous output.

Timer Adjustment: Each time delay has a numbered dial (the numbers act as reference only). Screwdriver adjustment and fixed delay models are available on special order.

Adjustment Range: The recommended adjustment range is . 1 to 3 seconds. If normal operating time is longer than 3 seconds, additional volume should be connected to the port marked "ACU." Each cubic inch additional volume connected to this port increases maximum time delay by 8 seconds.

Sequence Controlled with Input Signals: If all steps are started by input signals, use one 59897 start/stop unit and an additional 59898 unit as required to complete the sequence.

Sequence Controlled by Time Delay Functions: If all steps are started by time delay (with the exception of the start button) use one piece 59895 start/stop unit and an additional 59896 to complete the sequence.

Both Input, Inhibit and Time Delay used to Control a Sequence: Mixed circuits are easily accomplished by selecting from the units previously mentioned, plus two more. Models 59899 and 59900 provide a combination of a time delay and an input signal functions in a single unit. Using the 59899 and 59900 gives you the exact unit needed for all mixed circuits.
Inhibitor: Inhibitor models (59920 through 59925) are used as the first, second or later circuit, depending on the application requirements. Inhibitors can be used to sense position of a cylinder, or other actuator, when limit switches are not appropriate.

Set/Reset Memory

Automatic Reset

Timer Adjustment

Set-Up

Steps to Connecting Flex-6 Units

1. Arrange the units in the order and sequence they are used (steps 1 \& 2 top, 3 \& 4 next, etc.).
2. Connect a maintained supply to the "supply in" port of the first unit. Then connect the "supply out" of the first unit to the "supply in" of the second unit. Connect subsequent units in this manner. The last "supply out" port will remain plugged.

LAST SUPPLY OUT PORT REMAINS PLUGGED.
3. Connect the set input signals. The start signal and all other input signals are connected to the set ports of the units they will start.

4. Connect and "program" the outputs. Each unit has three ports on the right side marked "A," "B," and "C." The "C" port is the output and is connected to the pilot valve or other device causing action for each stage. The "C" output signal can be removed by a signal (maintained) to the "A" port. The "B" ports are used to provide this maintained signal.

Example: Cylinder 1 extends in

 step 1 and retracts in step 4. The "C" port of step 1 is connected to a spring return pilot valve which extends the cylinder. The "B" port of step 4 is connected to the " A " port of step 1. This accomplishes the retract function.NOTE: Once these connections have been made, plug all "B" and "C" ports not used. "A" ports not used remain open.

5. Connect the reset signal from the last step in sequence to the port marked "reset" in the first. This signal resets the circuit, making it ready to start a new cycle.

All Ports are 10/32 Threads

Features

Individual Units

59895 S/R Mem-Delay Model

The first unit in a Flex-6 circuit when step two is a delay function. The first output is caused by the start input signal. The second output is caused by a time delay following the first output.
Flex 6 Dimensional Data is located on Pg. 18.

59895

59896

59897

59898

59899

59900

Fatures

Individual Units

59919-1 Cycle Repeat Circuit

Cycle Repeat Circuit provides continuous recycling of a control circuit started by a momentary start signal, end of cycle stop - momentary input, single cycle operation, emergency stop and an adjustable dwell between cycles.
Add to any Flex-6 circuit so it cycles continuously.
Flex 6 Dimensional Data is located on Pg. 18.
See page 33 for additional information.

59920 S/R Mem-Inhibitor Model

The first Flex-6 circuit when step two is an inhibitor function. The first output is caused by the start input signal. The second output is caused by the release of pressure on the inhibitor port.
Flex 6 Dimensional Data is located on Pg. 18.

59921 Inhibitor-Input Model

Used as the second or later circuit when the first stage will be

59919-1

59920

59921

59922

59923

59924

59925 Inhibitor-Delay Model

Used as the second or later circuit when the first stage will be controlled by an inhibitor signal and the second from a delay.
Flex 6 Dimensional Data is located on Pg. 18.

Illustration 1

Description

Here we have a two step sequence using one cylinder. When a push button is actuated, the cylinder will extend for an adjustable period of time. When the time has elapsed, the cylinder will retract to its original position.

Connections

A. This sequence uses a model 59895 Flex-6 unit.
B. Supply is connected to the "Supply In" port.
C. The output of a start push button is connected to the "Set" input port.
D. The step 1 output (top "c" port) is connected to the pilot port of the valve which will extend the cylinder.
E. The step 2 output (lower "c" port) is connected to the "Reset" input port.
F. Both "b" ports, the "Supply Out" port, and the "ACU" port are plugged (new units are shipped with these plugs installed.)
G. "a" ports, not used, remain open.

Function

1. At rest, the cylinder is retracted.
2. The operator presses the start push button. This signals the set port and step 1 output goes on immediately. The cylinder extends and the time delay is started. At this point the signal is "Locked In" and the operator can release the start push button. The time delay is adjustable. Turning the dial clockwise, extends the time setting.
3. When the adjusted time is expired, step 2 output goes on. Step 2 output signals the reset port. This causes the Flex-6 unit to reset* (unlocks the start signal) and outputs 1 and 2 go off., causing the cylinder to retract.
4. The circuit is now reset and ready for a new cycle when the start push button is again actuated.
*Set signal must be off for this to take place.

Illustration 2

Description

Here we have a two step sequence described in Illustration 1. The difference is that the extension of the cylinder is sensed by the inhibitor element built into the 59920 Flex-6 unit. Again, when the cylinder is fully extended, the cylinder will retract.

Connections

A. This sequence uses a model 59920 Flex- 6 unit.
B. The "A" connection is made from between the valve and the cylinder to the second set input.
C. All other connections are identical to those made in Illustration 1, except that we have added a connection from "b" of step 2 to "a" of step 1. This will make the cylinder retract even if the operator continues to hold the button.

Options

The additional connection from the "b" port of the second stage at the "a" port of the first stage insures that the cylinder will return even if the operator continues to hold the start button.

An emergency stop push button has also been added. If the operator presses the emergency stop button, the circuit will reset and both cylinders will retract.

Function

1. At rest, the cylinder is retracted.
2. The operator presses the start push button. This signals the set port and step 1 output goes on. The operator can now release the start button.
3. The cylinder now extends, and when fully extended or stopped mechanically, the signal at the second set port is fully released. This causes the step two output to go on retracting the cylinder and resetting the circuit.

Illustration 3

Description

Here we have a two step sequence described in Illustration 1. The difference is that this cylinder actuates a limit valve when it is fully extended. The limit valve signals the Flex-6 unit that the cylinder is extended and it is time to retract.

Connections

A. This sequence uses a model 59897 Flex-6 unit.
B. The limit valve output is connected to the port marked Set (Auto Reset)
C. All other connections are identical to those made in Illustration 1.

Options

Option A, preventing the operator from holding the cylinder extended and Option B, providing an optional retract push button could be added to this circuit. These options are described in Illustration 2.

Function

1. At rest, the cylinder is retracted.
2. The operator presses the start push button. This signals the set port and step 1 output goes on immediately. At this point, the signal is "Locked In" and the operator can release the start push button.
3. The cylinder actuates the extend limit valve (LV-1). Limit valve 1 signals the step 2 set port. This causes the step 2 output to go on immediately. The step 2 output signals the reset port, which resets the circuit* removing the step 1 and 2 outputs and allows the cylinder to retract.

* Set signal must be off for this to take place.

Illustration 4

Description

Here we have a two cylinder four step sequence.

1. When the push button is actuated, cylinder 1 extends. This also starts the first time delay.
2. When the first time delay times out, cylinder 1 retracts. This starts the second time delay.
3. When the second time delay times out, cylinder 2 extends. This starts the third time delay.
4. When the third time delay times out, cylinder 2 retracts. This also resets the circuit.

Connections

This circuit uses a model 59896 Flex-6 unit.
A. The 59896 is added to the circuit simply be removing the "Supply Out" plug in the 59895 and connecting this port to the "Supply On" port of the 59896 .
B. The supply and start push buttons are connected as before.
C. The step 1 output is connected to the valve that extends cylinder 1.
D. The step 2 output is connected to the "a" port of step 1.
E. The step 3 output is connected to the valve that extends cylinder 2.
F. The step 4 output is connected to the reset port.
G. All "b" ports, all accumulator ports and the supply out of the 59896 are plugged.
H. All "a" ports not used are left open.

Function

Looking closely at the diagram on top of the Flex-6 units, you may be able to trace the signals as the sequence progresses.

1. When the operator presses the start push button the signal sets the memory (MEM) in the first unit (MEM output on). This goes thru a "not" (N) element and to the step 1 output (CYL 1 extends). The output from the memory element is also connected to the first time delay by a diagonal line.
2. The output of delay 1 again goes through a "not" element to provide the step 2 output. This output is connected externally to the "a" input of step 1 and internally to the "a" port of the "not" element. This removes the output signal at step 1 and retracts cylinder 1 . The output of delay 1 is also connected to the second time delay via the "supply out" to "supply in" connection.
3. Time delay 2 extends cylinder 2 and starts time delay 3.
4. Time delay 3 outputs resets the entire circuit and in doing so retracts cylinder 2.

IIIUstration 5

Description

Here we have a circuit similar to the one shown in Illustration 4. The difference between these circuits is the sequence that the cylinders extend and retract. This is shown by the numbered arrows to the right of the cylinders.

Connections

Notice that the change in sequence is done entirely by changing the output connections on the right hand side of the Flex-6 units.
A. Step 1 output is connected to the valve that extends cylinder 1 (as before).
B. Step 2 output is connected to the valve that extends cylinder 2.
C. Step 3 output is connected to the "a" input port of step 2. This removes the ste 2 output and retracts cylinder 2.
D. Step 4 output is connected to the reset port (as before).
Thus by rearranging the output connections any sequence can be performed.

Options

1. To prevent the operator from holding cylinder 1 extended (by holding down the start push button), a connection can be made from the "b" port of step 4 to the "a" port of step 1.
2. An emergency retract push button can be added (See Illustration 2).
3. Additional accumulator and/or gauges can be added to each time delay (See Illustration 2).
4. Sequence step indicators can be added to the "b" ports (Model 59907-004).

Illustration 6

Description

This circuit is identical to the one shown in Illustration 5 except this circuit uses input signals and inhibitor function, rather than time delays, to start each step. The input signals come from limit valves that are mounted to detect the movement of each cylinder.

Connections

This circuit uses a 59897 and a 59924 Flex-6 unit. The output signals, the start signal and the supply are identical to those in Illustration 5. Three limit valves are mounted on the machine to detect the various cylinder positions. These positions are shown as triangles to the right of the cylinders. The same limit valves are shown again to the left of the Flex-6 circuit. They are connected to the Flex-6 circuit as follows:

LV-1 to the set port of Step 2
LV-2 to the set port of Step 3
Signal 3 to the set port of Step 4

Function

1. At rest both cylinders are retracted.
2. When the operator actuates the start push button step 1 output goes on and cylinder 1 extends.
3. Cylinder 1 actuates limit valve one when fully extended. Limit valve one signals step 2 and step 2 output extends cylinder 2.
4. Cylinder 2 extends actuating limit valve 2 when it is fully extended. Limit valve 2 signals step 3 and step 3 output goes on. Step 3 output is connected to the "a" port of step 2. This removes the step 2 output and cylinder 2 retracts.
5. Cylinder 2 releases limit valve 2 then it retracts. When cylinder \#2 is retracted, the pressure in line from valve to cylinder \#2 drops to 0 PSI , ("A" port of inhibitor) and output 4 comes on. Step 4 output resets the circuit and cylinder 1 retracts.

Illustration 7

Description

This is the same sequence as shown in Illustration 4 except that limit valves are used to signal the start of each step. Two options (A \& B) have also been added to the circuit.
A. Option A cancels step 3 output and retracts cylinder 2 when output 4 comes on.
B. Option B resets the circuit only after cylinder 2 if fully retracted.

Notes

The output connections and the input connections were changed from Illustration 6 to accomplish this sequence. Limit valve 4 was added so that each position of each cylinder could be detected. Step 5 is accomplished by "anding" step 4 output and the final limit valve input (LV-3). Using a 59913 in line "and" function. This could also be done by a series connection through limit valve 3.

This option is often used when each step of the sequence must be monitored closely. Example: continuous operating circuits.

Function

1. Operator actuates start push button. Cylinder 1 extends.
2. Cylinder 1 releases limit valve 4 and actuates limit valve 1 . Step 2 output goes on retracting cylinder 1.
3. Cylinder 1 releases limit valve 1 and actuates limit valve 4. Step 3 output goes on extending cylinder 2.
4. Cylinder 2 releases limit valve 3 and actuates limit valve 2. Step 4 output goes on retracting cylinder 2.
5. Cylinder 2 releases limit valve 2 and actuates limit valve 3. Circuit resets and is now ready for a new cycle.

IIIUstration 8

Description

Here is a six step sequence involving three cylinders. The sequence is as follows:

1. Operator actuates start push button. Clamp cylinder extends.
2. Clamp cylinder actuates limit valve 1. Punch cylinder extends.
3. Punch cylinder releases limit valve 3 and actuates limit valve 2. Punch valve retracts.
4. Punch cylinder releases limit valve 2 and actuates limit valve 3. Clamp cylinder retracts. Time delay 1 starts.
5. Time delay 1 times out. Eject cylinder extends, time delay 2 starts.
6. Time delay 2 times out. Eject cylinder is retracted and circuit is reset.

Variations

1. Both the 59898 (double input) and the 59896 (double timer) units are used in the same circuit.
2. This circuit also includes a double pilot valve on the clamp cylinder. Notice that the return pilot signal is simply tee'd from the signal that removes the step 1 output.

Illustration 9

Description

The circuit in Illustration 9 shows several additional features of Flex-6 circuits.

1. Flex-6 circuits can include as many steps as necessary to complete the sequence. Additional Flex-6 blocks are simply added by connecting the "supply out" port of previous steps to the "supply in" port of new steps. Here we have 4 Flex-6 units providing 8 separate steps in the machine sequence.
2. We are also showing two new Flex-6 assemblies not previously shown. They are models 59899 and 59900 and are used in circuits such as this where some of the steps are controlled by timers and others by input signals.
3. Notice cylinders 2 and 3 . When two cylinders work together their actions can be controlled by one step in the sequence. The only added provision here was to make sure both cylinder had fully extended before step 4 could take place. For this we provided limit valves 3 and 4. They can be connected in series (as shown) or "anded" together using a 59913 in line "and" function.
4. This drawing also shows a cylinder (cylinder 1) being extended and retracted twice in the sequence. First note how this is accomplished on the output side. Step one comes on and is later cancelled by step 2. Still later in the sequence step 4 output comes on, cancels step 2 and this allows step 1 to come back on. Finally step 7 comes on, cancels step 4, releasing step 2 and cancelling step 1 . Notice also that limit valve 1 and 2 outputs can be used more than once in the same circuit. Simply tee their outputs and connect to the stage start ports indicated.

Other Six Element Assemblies

Four other six element assemblies are available. These units are sometimes used with Flex-6 circuits and in other cases provide a complete function in themselves.
Two-Hand Ant-Tie-Down Model 59191
The two-hand anti-tie-down is used to insure that both push buttons have been actuated before the cycle will start. When the anti-tie-down is used, both buttons must be actuated concurrently to create an output signal. Once either push button is released, the output signal goes off. Both push buttons must then be released and reactuated to start again.

The first drawing shows a twohand anti-tie-down added to the start of a Flex-6 circuit.
The second drawing shows a more complex circuit which is used to insure that the operator hold both buttons until cylinder 1 is fully extended. Once cylinder 1 is extended and actuates limit valve 1 , the push buttons can be released and the machine will continue its automatic cycle.

The Signal Standardizer Model 59860

The 59860 signal standardizer (or signal shaper) can be used to convert a signal of any duration to outputs of a predetermined time period.
When the start signal is received, the cylinder will extend for the period of time adjusted on the timer. Then the cylinder will retract. The start input signal can be shorter or longer than the output signal(s)* without affecting the timing function.

The Oscillator Circuit Model 59861

When a signal is received at the input of the osciallator circuit output T^{1} will come on. After an adjustable period of time (adjustable at timer T^{1} output T^{1} will go off and output T^{2} will go on.* After another adjustable period of time (adjustable at T^{2}) output will go off and output T^{1} will go on. This will continue as long as the input remains on.

* Outputs not used can be plugged. Small cylinders can be ported directly to these outputs.

Cycle Repeat Circuit

Cycle Repeat Circuit Model 59919-1

This circuit is designed to replace the 59003-099 cycle repeat circuit.
The cycle repeat circuit shown can be added to any Flex-6 circuit so that it will recycle continuously. The circuit contained in this assembly is shown at the right.

1. The cycle repeat circuit provides for:
A. Continuous recycling of a control circuit, started by a a momentary start signal.
B. end of cycle stop - momentary input.
C. An adjustable dwell between cycles.
D. Single cycle operation.
E. Emergency stop.

The illustration at right shows a cycle repeat circuit connected in its simplest form. Actuation of the start push button starts the circuit to run in an auto-recycle mode. When the cycle stop push button is actuated the circuit will complete that cycle and will not start the next cycle. If you want the cycle to stop immediately, add the connection shown by the dotted line.

The illustration at right shows a more complex application of the cycle repeat circuit. Here we have provisions for either single cycle or automatic cycling and an auto cycle indicator. The circuit can be stopped either at the end of the cycle (with the auto cycle stop push button) or immediately (with the emergency stop button).

Features

Individual Elements

59010 "OR" Element

59023 "OR" Element on 1/8" Base

- Combines two air signals so either can produce an output.
- Output port C is pressurized when either input port A or B is pressurized "on".

Dimensions: $11 / 4^{\prime \prime}$ sq. $\times 1^{1 "}$ (31.8 mm sq. $\times 25.4 \mathrm{~mm}$)
Response Times: Input to Output Milliseconds

"A" on to "C" on	7.5
"B" on to "C" on	7

59111 "AND" Element

59124 "AND" Element on 1/8" Base

- Combines two signals so both must be on to create an output.
- Output port C is pressurized only when both inputs A \& B are pressurized "on".
- Can be used with timer elements to produce time-delay functions.
- Shifting is snap-action when input at "A" port increases to 70% of pressure at " B " port.

Return when "A" decreases to 40% of " B ".
Dimensions: 1 1/4" Sq. x $121 / 32$ " (31.8 mm sq. x 42.1 mm)
Response Times: Input to Output Milliseconds

$$
\text { "A" on to "C" on } 8
$$

$$
\text { "A" off to "C" off } \quad 9.5
$$

59112 "NOT" Element

59125 "NOT" Element on 1/8" Base

- Combines two signals so that one ("B") must be on, and the other ("A") must be off to create an output.
- Output C is pressurized only when input B is pressurized and input A is off.
- Shifting is snap-action when input at " A " increases to 70% of pressure at " B ". Return when " A " decreases to 40% of " B ".
Dimensions: 1 1/4" Sq. x $121 / 32$ " (31.8 mm sq. x 42.1 mm)
Response Times: Input to Output Milliseconds

"A" on to "C" off	8.5
"A" off to "C" on	9

59800 Inhibitor Element

59912 Inhibitor Assembly on 1/8" Base

- Functions as NOT element except pressure at A must drop below 5% of supply before element will reset, regaining output at C .
- Useful in detecting air cylinder motions where limit valves cannot be applied.

Response Times: Input to Output Milliseconds
A on to C off 15
A off to C on 25

59181 Set-Reset (S-R) Gate and 59113 Memory Models 59185 Set-Reset (S-R) Gate and Memory Assembly on 1/8" Base

- The elements work together to perform a memory function.
- With constant supply at B of MEM and B of S-R connected to A of MEM, a momentary pressure signal at C of S - R will cause C of MEM to pressurize. C of MEM will remain pressurized until a pressure signal to A of $S-R$ is received.
- The MEMORY is pneumatically retained. If supply is removed (B MEM off), output C will go off \& remain off until a new set signal is received.
- The reset signal ("A" of S-R) is snap-action function and can be connected to a TIMER element to create a delayed reset function.
Dimensions: $\quad 11 / 4^{\prime \prime} \mathrm{sq} . \times 121 / 32^{\prime \prime}(31.8 \mathrm{~mm} \times 42.1 \mathrm{~mm})$
Minimum Time: \quad Signal \quad Milliseconds
To SET 17
To RESET

Truth table

59010

59111
Truth table

Features

Flip-Flop

59892"FLIP FLOP" Model

- A memory type element, Flip-Flop converts momentary signals received at the set and reset ports into maintained corresponding outputs.
- A set signal at A shifts the Flip-Flop to C port on and resets D to off. A reset signal at F shifts the Flip-Flop to D on and C off.
- If set or reset signals are maintained, later signals of equal pressure to the opposite input will not alter the output condition.
- The Flip-Flop has six ports and requires two element spaces.
A Set Input
D Reset Output
B Supply
E Supply
C Set Output
F Reset Input
- 59892 has two top ports (10-32) for C \& D outputs.
- Shift pressure is 50% of supply pressure.

Dimensions: $21 / 2^{\prime \prime} \times 17 / 32^{\prime \prime}(63.5 \mathrm{~mm} \times 36.5 \mathrm{~mm})$

Approximate Response Time

Input to Output Milliseconds
A on to C on 11
F on to D on 11

Screwdriver Adjustable Delay Units

- $\pm 4 \%$ timing accuracy.

Individual Element
59121 Timing Range: . 08 to 7.5 seconds

Base Mounted Elements (1/8" Base) 59158 Timing Range: . 08 to 7.5 seconds 59879 Timing Range: 4.1 to 27.5 seconds

Dial Adjustable Delay Units

- $\pm 4 \%$ timing accuracy.

Individual Element
59156 Timing Range .08 to 7.5 seconds

Base Mounted Elements (1/8" Base) 59160 Timing Range: . 08 to 7.5 seconds 59880 Timing Range: 4.1 to 27.5 seconds

59156

Dimensions for Base Assemblies are on page 40.

59166-4 Fixed Delays

- Not adjustable. Order model for desired time.

Dimensions: $11 / 4^{\prime \prime}$ sq x 2 3/4" (31.8mm sq. x 69.9mm)
Model Milliseconds
$\overline{59166-4} \quad 445 \pm 40$

Fatures

Pulse Elements \& Assemblies

PULSE ELEMENTS

- Combine a NOT and a TIMER function.
- These perform TIMING-IN inverted or PULSE functions, depending on connections to supply port B .
For TIMING-IN INVERTED function: With port B pressurized, C port remains on until port A is pressurized. When A is pressurized, C will go OFF after a predetermined amount of time.
PULSE function: When $\mathrm{A} \& \mathrm{~B}$ are connected together, output C is normally off. If inputs are applied to $A \& B$, output C goes on. C remains on for timer period, then goes off and remains off until inputs are removed and reapplied. Reset time is 100 milliseconds. The predetermined amount of time can be fixed or adjustable.

1. With input off, the output will also be off.
2. Output goes on \& timing starts when input comes on.
3. When timing is completed, output goes off.
4. Remove \& reapply input to get second output.

NOTE: Input must be longer than output for full times signal. If not possible, see momentary timers.

Screw Adjustable Pulse Timers

- $\pm 4 \%$ timing accuracy.
$\frac{\text { Individual Element }}{59120 \text { Timing Range: } .08 \text { to } 7.5 \text { seconds }}$
Base Mounted Elements ($1 / 8$ " Base)
59157 Timing Range: .08 to 7.5 seconds
59874 Timing Range: 3.0 to 17.5 seconds
59881 Timing Range: .20 to 27.5 seconds

Dial Adjustable Pulse Timers
Individual Element
59155 Timing Range: 08 to 7.5 seconds
Base Mounted Elements (1/8" Base)
59159 Timing Range: 08 to 7.5 seconds
59875 Timing Range: 3.0 to 17.5 seconds
59882 Timing range of 4.6 to 27.5 seconds

59165-4 Fixed Pulse

- Not adjustable, order model for time desired; $\pm 10 \%$ timing accuracy.

Dimensions: $11 / 4^{\prime \prime}$ sq x 2 3/4" (31.8 mm sq. x 69.9 mm)

$$
\frac{\text { Model }}{59165-4} \quad \frac{\text { Milliseconds }}{445 \pm 40}
$$

59114 Differentiator

- A non-adjustable pulse element.
- With A blocked, signal at B will produce an output at C of 80 to 130 milliseconds. Output can be lengthened by connecting a 59117 Accumulator to port A.
- Reset time is 110 milliseconds.

Dimensions: $11 / 4^{\prime \prime}$ sq. x $13 / 4^{\prime \prime}$ (31.8 mm sq . x 44.5 mm)
Dimensions for Base Assemblies are on page 40.

59114

Features

Timer Elements

TIMERS are used in conjunction with snap-acting 59111 AND, 59112 NOT, 59181 S-R GATE or 59800 INHIBITOR to perform special functions not offered in one complete element.

- Overall height of circuit board can be reduced by using these combinations rather than elements which combine these functions.
- Timing periods can exceed 7.5 seconds when using with 59117 Accumulators.
- Time can be fixed or adjustable, depending on element selected.

59115 Screw Adjustable Timer

- Connected to A of snap-acting AND or NOT element, these timing ranges can be accomplished.
Dimensions: $11 / 4^{\prime \prime}$ sq. x $27 / 64^{\prime \prime}$ (31.8 mm sq. $\times 53.6 \mathrm{~mm}$)
Number of $59117 \quad$ Timing Range
Timer
Accumulators $\pm 4 \%$ Seconds
$59115 \quad 0 \quad .08$ to 7.5
$59115 \quad 1 \quad .14$ to 17.5
59115 . 20 to 27.5
59115 . 26 to 37.5
$59115 \quad 4$. 32 to 47.5

59116 Dial Adjustable Timer

- Connected to A of snap-acting element, these timing ranges can be accomplished.

Dimensions: $11 / 4$ " sq. x $35 / 16$ " (31.8 mm sq. x 84.1 mm)
Number of $59117 \quad$ Timing Range

Timer	Accumulators	$\pm 4 \%$ Seconds
59116	0	1.4 to 7.5
59116	1	3.0 to 17.5
59116	2	4.6 to 27.5
59116	3	6.2 to 37.5
59116	4	7.8 to 47.5

Accumulator

59117 Accumulator

- Used with timing elements to extend timing range. C port is connected to output of timing element. Volume is approximately 1 cu . in. ($16.4 \mathrm{~cm}^{3}$).
Dimensions: $11 / 4^{\prime \prime}$ sq. x $21 / 16^{\prime \prime}$ (31.8 mm sq. x 52.4 mm)

Fixed Orifice plates and Port Plug

- Can be mounted in inlet or outlet ports of any element to reduce flow and/or increase response time.
- Fits into O-Ring cavity of element base.
- Plug is used to isolate port from channel connection.

Model	Orifice Size Inches (mm)
$59671-1$	$.0135(.343)$
$59671-2$	$.0180(.475)$
$59671-3$	$.0225(.572)$
$59671-4$	$.0260(.660)$
59718	Plug

Fatures

NOT Amplifier

59176 NOT Amplifier

- The element converts low pressure signals such as those used in liquid level sensing, to high pressure signals compatible with other APLC elements.
- Performs NOT function with exception when C output is greater than input of A_{1}.
- Input A \& B ports must be interconnected externally of element.
- Output C is on only when low pressure at A_{1} is off. C output equals pressure at $A \& B$.
- Shift pressure depends on element ordered and adjusted setting.
- Sensitivity adjustment screw allows adjustment of shift point within adjustable range. Dimensions: $11 / 4$ " sq. $\times 3$ " (31.8 mm sq. $\times 76.2 \mathrm{~mm}$)

Individual Approximate Response Time
Element Input to Output Milliseconds
59176-1
59176-2
A_{1} on to C off
A_{1} off to C on
10
10
Element on
Base Assys. 59162-2

Approximate Response Time

Input to Output Milliseconds

A_{1} off to C on

Adjustable A1 Pressure Range PSIG when $a \& b=50$ PSIG (3.4bar) . 24 to 1.5 (0.11 to .07) 1.5 to 15 (0.7 to 1.0)

Adjustable A1 Pressure Range PSIG when a \& $\mathrm{b}=50$ PSIG (3.4bar) 1.5 to 15 (0.7 to 1.0)

AND Amplifier

59175 "AND" Amplifier

- The amplifier converts low pressure signals such as those used in liquid level sensing, to high pressure signals compatible with other APLC elements.
- Performs AND function except when output at C is greater than input A_{1}.
- Inputs A \& B must be interconnected externally of the element.
- Output C is on only when A_{1} receives a low pressure signal and inputs $A \& B$ are pressurized. Output at C equals pressure at inputs $A \& B$.
- Shift pressure depends on element ordered and adjusted setting.
- Sensitivity adjustment screw allows adjustment of shift point within adjustable range.

Dimensions: $1 / 4$ " sq. x 3 " (31.8 mm sq. x 76.2 mm)
Adjustable A1 Pressure Range PSIG when a \& $\mathrm{b}=50$ PSIG (3.4bar) . 24 to 1.5 (0.11 to 07) 1.5 to 15 (0.7 to 1.0)

Adjustable A1 Pressure Range PSIG
when a \& $\mathrm{b}=50$ PSIG (3.4bar) . 24 to 1.5 (0.11 to .07)
1.5 to 15 (0.7 to 1.0)

Dimensions for Base Assemblies are on page 40.

Individual	Approximate Response Time	
Element	Input to Output	Milliseconds
59175-1	A_{1} on to C on	10
59175-2	A_{1} off to C off	10

$\begin{array}{lll}\begin{array}{l}\text { Element on } \\ \text { Base Assys. }\end{array} & \begin{array}{l}\text { Approximate Response Time } \\ \text { Input to Output }\end{array} & \begin{array}{l}\text { Milliseconds } \\ \text { 59161-1 }\end{array} \\ & \mathrm{A}_{1} \text { on to } \mathrm{C} \text { on } & 10\end{array}$
59161-2 $\quad A_{1}$ off to C off
10

Special Purpose Elements

59089 Two to Three-Way Converter

- Used to convert a two-way (bleed signal) to a three-way (pressure-exhaust) signal.
- With supply B pressurized, C will be pressurized if A is not blocked. When A port is blocked, C will go off.
Dimensions: $11 / 4^{\prime \prime}$ sq. x $121 / 23^{\prime \prime}$ (31.8 mm sq. x 42.1 mm)
Approximate Response Time With 6" (152mm) 5/32" (4mm)
Input to Output
A open to C on
$\frac{\text { Tubing to A---Milliseconds }}{14}$
Add Milliseconds for each Foot more Tubing

A blocked to C off 70 5.5

Start up B to C pulse
90
32.5
33.5

59890 Vibrator Element

59866 Vibrator on $1 / 8$ " Base

- With input B on, C output will come on and go off in a constant timed pattern until the input is removed.
- The on and off times are not independently adjustable.
- Adjustment timing range: . 08 to 7.5 seconds. Output off equals 80% of on setting.
- C port must also be connected to the A input port on element.

20191 Circuit Board Mounted Poppet Valve

- 3-Way poppet with 1/4" ports. Plumb normally open (passing) or closed (non-passing.)
- Pilot signal port comes from any one of A, B, C ports on Circuit Cover Plate.
- Flow is 46.4 SCFM ($21.9 \mathrm{dm}^{3} / \mathrm{s}$) at 90 PSI (6.3 bar) supply and 75 PSI (5.2) outlet. Cv Factor-1.3.
- Mounts directly to circuit board, utilizing space of one standard element. Must be mounted at periphery of circuit.
Dimensions: 1 15/64" x 1 1/2" x 2 31/32" (31.4mm x 38.1mm x 75.4mm)

59891 Air to Electric Interface Device
20191

- Normally open, single throw, single pole pressure switch.
- Mount to top of C port of standard element.

Dimensions: $17 / 16^{\prime \prime}$ dia. x $21 / 4^{\prime \prime} \quad$ Wire is 22AWG

59891

59915-XX Electric to Air Interface Device

- Normally non-passing, three-way, single solenoid actuated valve.
- With B pressurized and the coil energized, an air output occurs at C port.
- When de-energized, B is blocked and C exhausted.
- Must be mounted on perimeter of circuit board.

Model	Supply	Output	Connections	Coil Replacement
59915-38	12 V DC/24 VAC	Air Signal	A blocked	116218-38
59915-39	24 V DC	30-150PSI	B supply	116218-39
59915-33	120 V AC	(2-10 bar)	C output	116218-33

Porting Block

59109 Porting Block

- Provides three instant tube fittings. One each to A, B or C ports of elements.
- One porting block required for each element.

Dimensions for Base Assemblies are on page 40.

Features

Mounting Equipment

59200-XX Base Plate

- Contains two mounting holes and three porting holes for each element.
- Surface is metallic grit etched and plated to resist corrosion.

59595-88 Module Gasket

- Corresponding circuit pattern of layout sheet is printed on module. Air channels are then cut into gasket for air passage.

59201-XX Cover Plate

- Used in conjunction with 59200 base plate to retain 59595 module.
- Contains only the mounting holes required by elements.
- Surface is metallic grit etched and plated to resist corrosion.

Model: Dimensions in Inches (Millimeters) Element Coverage Base Plate
59200-24
$5 / 64 \times 321 / 64 \times 553 / 64(2 \times 85 \times 148)$
2×4
$59200-44 \quad 5 / 64 \times 553 / 64 \times 553 / 64(2 \times 148 \times 148)$
4×4
$59200-66 \quad 5 / 64 \times 821 / 64 \times 821 / 64(2 \times 212 \times 212) \quad 6 \times 6$
$59200-88 \quad 5 / 64 \times 1045 / 64 \times 1045 / 64(2 \times 272 \times 272)$
8×8
Module Gasket
59595-88 $\quad 1 / 16 \times 1045 / 64 \times 1045 / 64(2 \times 272 \times 272) \quad 8 \times 8$
Cover Plate
59201-24 $5 / 32 \times 321 / 64 \times 553 / 64(4 \times 85 \times 148) \quad 2 \times 4$
59201-44 $5 / 32 \times 553 / 64 \times 553 / 64(4 \times 148 \times 148) \quad 4 \times 4$
$59201-66 \quad 5 / 32 \times 821 / 64 \times 821 / 64(4 \times 212 \times 212) \quad 6 \times 6$
$59201-88 \quad 5 / 32 \times 1045 / 64 \times 1045 / 64(4 \times 272 \times 272) \quad 8 \times 8$

Base Assembly Method

- Simple logic functions requiring up to four elements can be mounted using the function base assembly method.
- Interconnections between elements are made in a module below the elements. External connections are made via the $1 / 8^{\prime \prime}$ NPTF ports on the porting blocks.

Model:	Base Assembly	
	\# of Ports	
$\mathbf{5 9 3 8 7}$	1-Element	3
59061	2-Elements	6
59062	3-Elements	8
59063	4-Elements	10

Components Base, Washer \& nuts. Base, Cover plate, module, pipe plugs, nuts and washers.

58023 Split Bit 1/4" Hex Shank Bit used to build function base assemblies

Features

Multiple Snap Indicator

- Bright sleeve within indicator extends to indicate pressurized condition. Sleeve retracts when pressure is removed.
- Snap-in design for installation into $11 / 16^{\prime \prime}$ (17.5 mm) hole.

Pressure Range: $30-150 \mathrm{PSI}$ (2.1-10.4 bar)
59812-1 Red Indicator 1/8" Ports
59812-3 Green Indicator 1/8" Ports

Snap Flag Indicators

- Pressurized condition indicated by colored flag in window.
- Superior distance indication.

Pressure Range: $30-150 \mathrm{PSI}$ (2.1-10.4 bar)
59073 Red Indicator 1/8" Ports
59107 Green Indicator 1/8" Ports

Element Test Indicators

- Used to indicate an output pressure signal from an element.
- Thread into test port of "OR", "AND" or "MEM" elements.

59084 Red pin extends under pressure. Spring Return.
59422 Test Valve to thread on gauge.
24130 Press to test indicator.

Panel Mounted Miniature Control Valves \& Indicators

- Uses basic 200 Series 3-way valves.
- Valves are available with push button or rocker type selectors.
- Both valves and indicators come complete.

Order mounting plates and legend sheets separately.

59796-X Mounting Plates (with dimensions)

Model	\# of Controls	"A"	"B"	Height
59796-1	1	1-11/16"	9/16"	3-7/8"
59796-2	2	2-3/8"	1-1/4"	$3-7 / 8{ }^{\text {c }}$
59796-4	4	$3-3 / 4{ }^{\prime \prime}$	2-5/8"	$3-7 / 8{ }^{\text {c }}$
59796-6	6	$5-1 / 8^{\prime \prime}$	4 "	$3-7 / 8^{\prime \prime}$

Panel Mounted Indicators

Model	Color		
		Port	
$59811-1$	Red		$1 / 8^{\prime \prime}$ NPTF
$59811-3$	Green		$1 / 8^{\prime \prime}$ NPTF

3-Way Control Valve Assembly

| 1/8" Ports
 Models | Tube Fittings
 Models | | Actuation
 Type | |
| :--- | :---: | :---: | :---: | :---: | | Port |
| :---: |
| Designation |

59724-X Legend Sheets

Self-adhesive. They fit into recesses of valves and indicators.

Model	Color
$59724-1$	Black
$59724-2$	White
$59724-3$	Green
$59724-4$	Red

Dimensions and Mounting Information

Features

Control Enclosures

58027

- Accepts single push button, selector or palm button valves.
- Standard $1 / 2^{\text {" }}$ and $3 / 4$ " conduit knock-outs at top and bottom. Dimensions: 4 3/8" x 4 3/8" x 3 5/8" ($111.1 \mathrm{~mm} \times 111.1 \mathrm{~mm} \times 82.1 \mathrm{~mm}$)

59361

- Accepts four push button, selector or palm button valves.
- Standard $1 / 2^{\prime \prime}$ and $3 / 4^{\prime \prime}$ conduit knock-outs at top and bottom.
- Includes grommets, screws, washers and nuts for installation. Dimensions: $43 / 8 " \times 10 " \times 35 / 8 "$ ($111.1 \mathrm{~mm} \times 254 \mathrm{~mm} \times 82.1 \mathrm{~mm}$)

59792

- Accepts single push button, selector or palm button valves.
- Standard $1 / 2^{\prime \prime}$ and $3 / 4^{\prime \prime}$ conduit knock-outs at top and bottom.
- Additional space provided for circuitry.

58027

59792

Enclosures

58060 Two Compartment Enclosure

- Accepts 6×6 element circuit board.
- Rear compartment provides access to terminal connections and back of circuit board.
- Pre-drilled pads for terminals and mounting rails.

Dimensions: $119 / 16 \times 11$ 23/32" x 8 7/32" (294mm x 298mm x 209mm)

59097-6 Hinged Mounting Plates

- Accepts 6×6 element circuit boards.
- Provides mounting and swing-out of circuit boards.
- Requires $5 / 8^{\prime \prime}(15.9 \mathrm{~mm})$ clearance for circuit boards, $23 / 8$ " $(60 \mathrm{~mm})$ for back tubulation.

Circuit Bds
Elements Dimensions
59097-6
6×6
$\left.\overline{91 / 2^{\prime \prime} \times 10^{\prime \prime}(241 \times 254 m m}\right)$

Features

Pneumatic Counters

Totalizing Counters/Manual Reset

59095-1 Knob Reset/Base Mount

- Counter advances one digit each time a pneumatic pulse is received.
- 600 counts/minute maximum.

59095-2 Dial Reset/Panel Mount

- Counter advances one digit each time a pneumatic pulse is received.
- 600 counts/minute maximum. Can also be base mounted.

59095-3 Key Reset/Panel Mount

- Counter advances one digit each time a pneumatic pulse is received.
- 600 counts/minute maximum. Can also be base mounted.

Specifications

Operating Pressure:
30 to 150 PSIG (2 to 10 bar)
Minimum Signal Duration:
Pressure Signal 0.05 sec .

Operating Temperature:
32° to $160^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $71^{\circ} \mathrm{C}$)
Ports:
1/8" NPTF

Totalizing Counter/Manual or Pressure Reset
59801 Panel Mount
59836 Surface Mount

- 6-digit readout. Records up to 1500 counts/minute
- Can be reset using reset button or pneumatic signal.

Specifications

Operating Pressure:

30 to 115 PSIG (2 to 8 bar)
Minimum Signal Duration:
Pressure Signal .008 sec. Exhaust Signal .010 sec .
Reset Signal . 150 sec .

Operating Temperature:
32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $60^{\circ} \mathrm{C}$)

Ports:
5/32" (4mm) Tube Fittings

Predetermined Counter/Manual or Pressure Reset

 59802 Panel Mount- 5-digit readout.
- Each pneumatic pulse decreases predetermined number by one until zero is reached. An output signal is then provided.
- Counter is reset to predetermined number by the reset button or a pneumatic signal.

Specifications

Operating Pressure:
30 to 115 PSIG (2 to 8 bar)

Minimum Signal Duration:

Pressure Signal . 008 sec . Exhaust Signal . 012 sec . Reset Signal . 180 sec .

Port Designation:
P (3) Supply, A (4) Output,
Z (1) Count, Y (2) Reset.

Operating Temperature
32° to $140^{\circ} \mathrm{F}\left(0^{\circ}\right.$ to $60^{\circ} \mathrm{C}$)

Ports:

5/32" (4mm) Tube Fittings
Flow:
4.5 SCFM ($2.1 \mathrm{dm}^{3} / \mathrm{s}$)

59095-1

59836

59802

Features

- Provides actuation of up to 12,3 -way valves in different positions.
- Each can be plumbed normally passing, normally non-passing, multipurpose, selector or any 2 -way function.
- Cam lobes snap on in any of 12 positions.
- Available with $5 / 32$ " tube fittings or $1 / 8$ " ports.
- Pressure Range 30-150 PSI (2.1-10.4 bar)

Model \# for	Model \# for 5/32" Tubes	Number of Camwheels	Number of Cam Lobes	Valves
1/8" Ports	Cal00-202-1	2	2	22
$59100-202$	$5900-222-1$	2	4	24
$59100-222$	$59100-220$	3	33	
$59100-303$	$59100-303-1$	3	6	36
$59100-333$	$59100-333-1$	3	4	34
$59100-404$	$59100-404-1$	4	8	38
$59100-444$	$59100-444-1$	4	5	45
$59100-505$	$59100-505-1$	5	10	50
$59100-555$	$59100-555-1$	5	6	56
$59100-606$	$59100-606-1$	6	12	62
$59100-666$	$59100-666-1$	6		

Model Number Significance:

Model \# " X " Dimensions Inches (mm)
59100-2XX
2-27/64 (62 mm)
59100-3XX $\quad 3-7 / 64(79 \mathrm{~mm})$
59100-4XX $\quad 3-51 / 64(96 \mathrm{~mm})$
59100-5XX $\quad 4-31 / 64(114 \mathrm{~mm})$
59100-6XX $\quad 5-11 / 64(131 \mathrm{~mm})$

Liquid Level Sensor

- Sensors produce a pneumatic output signal as fluid levels in an unpressurized vessel rise or fall past predetermined levels. Will accurately sense almost any fluid.
- Supply pressure range: 30 to 150 psig. Range recommended for quickest response is 50 to 100 psig.
- When on, the output is the same pressure as that supplied to the air inlet. When off, the output is connected to atmosphere through an internal exhaust port. This insures a sharp on-off signal from the sensor.
- Units supplied with 25^{\prime} of flexible $1 / 4^{\prime \prime}$ tubing.

59916-1 High Level Sensor

- Provides an output signal when sensing tube is blocked by a liquid.

59916-2 Low Level Sensor

- Provides an output signal when sensing tube is not blocked by a liquid.

Features

Pneumatic Sensing Components

59807 Amplifier

- Designed to amplify low pressure signals from sensors.
- Actuates at signal pressures as low as one to four inches (249 to 995 Pa) of water.

Tubing, Fittings \& Connectors

Y-Connector	Tube Size	
59482	5/32	
Male Connector	Tube Size	NPT
59474-4	5/32	1/8
59474-56	1/4	1/8
59474-156	1/4	1/4
59474-256	1/4	3/8

Tubing (100^{\prime} rolls) Tube Size

Union	Tube Size
59759-4	5/32
59759-56	1/4
Union Elbow	Tube Size
59760-4	5/32
59760-56	1/4

Union Tee	
$59761-4$	Tube Size
$59761-56$	$1 / 4$

Male Elbow	Tube Size	NPT
59756-4	5/32	1/8
59756-56	1/4	1/8
59756-156	1/4	1/4

Plug	Tube Size
$59763-4$	$5 / 32$
$59763-56$	$1 / 4$

Flex-6 Accessories
59629 Adapter 1/8" to 10-32 Thread

59634 Cross Junction 10-32 Thread

5990X Push On Connector 59905: 10-32 NPT x 1/16" Tube 59906: 10-32 NPT x 1/8" Tube

59764-4 Male Connector 10-32 Thread x 5/32" Tube

59908 Nipple 10-32 x 10-32 Thread

59903 Swivel Connector

59636 Bulkhead Fitting 10-32 x 10-32 Thread
P.O. Box 151- One Aro Center

Bryan, Ohio 43506-0151
(419) 636-4242 • FAX (419) 633-1674

Fluid Handling: (Customer Service) (419)633-1794 • FAX (419)633-1772

Fluid Power: (Customer Service)
(419)633-1796 • FAX (419)633-1774

Web: www.arozone.com

NORTH AMERICA
Canada
Production Equipment Group
Ingersoll-Rand Canada Inc.
51 Worcester Road
Rexdale, Ontario M9W 4K2
PHONE: 1 (416) 213-4500
FAX: 1 (416) 213-4510

LATIN AMERICA

Latin America
Headquarters
Ingersol|-Rand PEG
Aro Division
730 N.W. 107 Ave.,Suite 300
Miami, FL 33172-3107
PH: (305) 222-0812/559-0500
FAX:(305) 222-0864/559-7505
Brazil
Ingersol|-Rand do Brasil Ltda.
Av. Dr. Cardoso de Melo 1855
Cep. 04548-005 São Paulo S.P. 55
118227400
PH: (55-11) 822-7400
FAX: (55-11) 866-4985
Chile
Ingersoll-Rand Chile, Ltda.
Nueva Tajamar 555
Oficina 1502
Santiago, Chile
PH: 56-2 $339-7939$
FAX: 56-2 339-7940

Mexico

Ingersoll-Rand, S.A. de C.V.
Blva. Centro Industrial No. 11
Industrial Puente de Vigas
54070 Tlanepantla, Edo. Mex.
PH: (525) 3904021 Ext. 109
FAX: (525) 3904031

EUROPE

European Headquarters
Europe, Africa \& Middle East
Ingersoll-Rand
Zone du Chêne Sorcier
B.P. 62

Les Clayes sous Bois
Cedex - France
PH: (33) 0130076950
FAX: (33) 0130076996

ASIA

Japan

Ingersoll-Rand Japan, Ltd.
Shin-Yokohama Square Bldg. 5F 3-12, Shin-Yokohama 2-chome Kohoku-ku, Yokohama-shi
Kanagawa Pref. 222, Japan
PH: (81) 45-476-7801
FAX: (81) 45-476-7806

Singapore

Ingersoll-Rand S.E.A. Pte Ltd.
42, Benoi Road
Singapore 2262
PH: (65) 8611555
FAX: (65) 8610317

Australia

Ingersoll-Rand Australia, Ltd
1 Hartnett Drive
Seaford, Vic 3198
PH: (61) 3 9554-1600
FAX: (61) 3 9554-1611
China / Hong Kong
Ingersoll-Rand Hong Kong
Suite 1201-3, 12 Floor,
Central Plaza
18 Harbour Road
Wanchai, Hong Kong
PH: (852) 2527-0183
FAX: (852) 2529-5976

Korea

Ingersoll-Rand Korea
Production Equipment Group
\#1005, 10th Floor.
Guhsung Bldg.
541, Dohwa-Dong
Mapo-Ku, Seoul
Korea
PH: (82) 2-703-8461/3
FAX: (82) 2-3272-5894
Taiwan
Ingersoll-Rand Taiwan
12F-2, No. 79
Shin-Tai Wu Road
Sec. 1, Hsi-Chih Town
Taipei Hsien, Taiwan, R.O.C.
PH: 886-2-698-4858 Ext. 18
FAX: 886-2-698-9897

